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ABSTRACT: A molecular pentafoil knot and doubly and
triply entwined [2]catenanes based on circular Fe(II)
double helicate scaffolds bind halide anions in their central
cavities through electrostatic and CH···X− hydrogen-
bonding interactions. The binding is up to (3.6 ± 0.2) ×
1010 M−1 in acetonitrile (for pentafoil knot [2·Cl](PF6)9),
making these topologically complex host molecules some
of the strongest synthetic noncovalent binders of halide
anions measured to date, comparable in chloride ion
affinity to silver salts.

In a classic series of experiments in themid-1990s, Lehn and co-
workers found that Fe(II) salts and tris(bipyridine) ligands

with short spacers between the chelating groups assemble into
double-stranded circular metal helicates.1 The size of the circular
helicate produced was often influenced by the counterion of the
metal salt employed: for example, the use of FeCl2 led to a
pentameric cyclic helicate with a chloride anion at the center of
the structure in the solid state.1aUnlike the other counterions, this
clearly strongly bound chloride ion was reported not to be
exchanged upon washing with a saturated solution of
hexafluorophosphate or triflate salts.1a However, the strength
and selectivity of the anion binding of these circular helicates were
never quantified, perhaps because of the perceived difficulty of
analyzing the substitution of one anion for another in the presence
of other counterions.
We recently described the synthesis of a series of molecular

knots2 and links3 using different sized circular helicate scaffolds to
control the number of crossings in the closed-loop ligand strand.
Solomon link [1](PF6)8 (a doubly entwined [2]catenane) and
pentafoil knot [2·Cl](PF6)9 are derived from tetrameric and
pentameric circular helicates, respectively,4,5 and are assembled
through reversible imine chemistry (Figure 1).6 The Star ofDavid
61
2 link [3](PF6)12 (a triply entwined [2]catenane) is based on a
hexameric circular helicate prepared from tris(bipyridine) ligands
with the entwined complex covalently captured by olefin
metathesis.7 Here we report on the binding affinities of the
central cavities of knots and links [1](PF6)8, [2](PF6)10, and
[3](PF6)12 (Figure 1) for various halide anions.

8

Well-ordered anions are found associated with the central
cavity in the X-ray crystal structures of salts of each of these links
and knot: two PF6

− anions in [1](PF6)8;
4 one Cl− anion in [2·

Cl](PF6)9
5 and one PF6

− anion in [3·PF6](Ph4B)11.
7 The solid-

state structures (Figure 2) show that in each case the H1 aromatic
protons (see Figure 1 for numbering scheme) line the walls of the

inner cavities of the circular helicates. The metal ions not only
provide long-range attractive electrostatic interactions to any
electron-richmoiety in the central cavity (the overall charge of the
complex is, of course, neutral because of the other counterions)
but also preorganize the bindingpocket (through formationof the
relatively rigid circular double helicate) and inductively activate
the C−H1 protons as hydrogen bond donors for a second sphere
of coordination10 to electron-rich species.11−13

The all-PF6
− complexes of the Solomon link and Star of David

catenane, [1](PF6)8 and [3](PF6)12, respectively, were isolated
from the reactions used to form the interlocked architectures by
washing with aqueous KPF6.

4,7 We found that the chloride anion
could be removed from [2·Cl](PF6)9 by a two-stage procedure of
salt metathesis,14 first using aqueous NH4BF4 and then aqueous
NH4PF6 (see Supporting Information (SI)).15 Exchange of the
chloride ion is accompanied by a∼1.4 ppm upfield shift in the H1

protons as a consequence of their no longer being involved in
strong CH···Cl− hydrogen-bonding (Figure 3e). Addition of up
to 1 equiv of Bu4NCl

16 to the “empty” 17 pentafoil knot
([2](PF6)10) replaces just one of the 10PF6

− anions (electrospray
ionization mass spectrometry (ESI-MS) shows a series of m/z
fragments corresponding to [2(PF6)nCl]

(9−n)+ but no evidence
for complexes with more than one Cl− anion). 1H NMR
spectroscopy (Figure 3c) confirms that the chloride anion is
bound within the central cavity of the knot in solution (H1, and to
a lesser extent H6,18 are significantly shifted compared to
[2](PF6)10; Figure 3c, cf. Figure 3e). Addition of less than 1
equiv of Bu4NCl to [2](PF6)10 gives two distinct species in the

1H
NMR spectrum (Figure 3d), [2](PF6)10 and [2·Cl](PF6)9,
indicating that the Cl− anion bound in the cavity of the knot
only undergoes slow exchange on theNMR time scalewith others
in bulk solution.19

With all three of the all-PF6
− complexes ([1](PF6)8, [2]-

(PF6)10, and [3](PF6)12) in hand, we measured the equilibrium
constant (effectively a binding constant) for the exchange of one
of the PF6

− anions for a single halide anion in acetonitrile20

(Scheme 1; Table 1). In every case (with the exception of Cl− or
Br− with [3]):21 (i) ESI-MS showed the exchange of only one
halide for a PF6

− anion (i.e., no complexes with more than one
halide) during addition of up to 1 equiv of the tetrabutylammo-
nium salt;16 and (ii) 1HNMR indicated halide bindingonlywithin
the central cavity of the circular helicates (significant shifts in H1

compared to the rest of the 1H NMR spectrum, e.g., Figure 3).22

These results confirmed that the displacement of the first PF6
−
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anion, by a halide that binds within the central cavity, occurs in a
verydifferent binding strength regime to the exchange of theother
PF6

− counterions.
The strength of binding of each knot/link with iodide was

sufficiently modest in acetonitrile that it could bemeasured by 1H
NMR titration experiments. In contrast, the affinity of the
pentafoil knot for Cl− or Br− was so strong, even in acetonitrile,
that it was determined by comparison with the affinity of AgPF6
for the halide. The other binding constants were measured by
competition experiments with a readily accessible calix[4]-
bipyrrole derivative for which (strong) halide binding constants
had previously been determined (see SI).23

The anion exchange experiments (Table 1) show that the links
and knot each bind halide ions strongly in the central cavity in
acetonitrile. TheK1 values given in Table 1 denote the preference
for halide binding over PF6

− association by the circular helicate
and indicate that even the weakest halide host, Star of David
catenane [3], binds I− >10 000× stronger in the central cavity
than it does PF6

−. Pentafoil knot [2] binds a single Cl− or Br− ion
with extremely high affinity (>1010 M−1), 5 orders of magnitude
stronger than I−. To put this into context, 450 equiv24 of AgPF6 is
required to remove all of the chloride ions from [2·Cl](PF6)9 in
acetonitrile (see SI).25 Unless in the presence of excess AgPF6,
pentafoil knot [2](PF6)10 readily sequesters traces of Cl

− from its

environment, including solvents and glassware, re-forming [2·
Cl](PF6)9.
Solomon link [1] also binds the two smaller halide anions

strongly (Cl−,K1 = (3.0± 2.5)× 108M−1; Br−,K1 = (1.0± 0.5)×
107 M−1), although notably weaker than the pentafoil knot. The
Star of David [2]catenane [3] binds the first I− ion exchanged for
PF6

− selectively within the catenane’s central cavity (K1 = (1.2 ±
0.1) × 104 M−1) in the manner observed for the smaller host
molecules with each of the halides. However, unlike the other
systems, a single PF6

− anion is not exchanged for one Cl− or Br−

ion preferentially before all of the others,21 nor are the Cl− or Br−

ions bound exclusivelywithin the central cavity (the resonances of
several ligand protons, not just H1, shift in the 1H NMR
spectrum). With each of the circular helicates, nonspherical
anions did not show selective binding of solely a single exchanged
anion.
The strength andbindingpreferenceswithin the central cavities

of the knot and links can be rationalized through consideration of
the solid-state structures shown in Figure 2. The smallest cavity is
actually that of the pentafoil knot [2], a circular pentameric
helicate, which has a size (d≈ 3.4Å at its narrowest) and hourglass
cylindrical topography that allows the spherical Cl− (d = 3.6 Å 26)
andBr− (d=3.9Å 26) anions to bind effectively to the inner ring of
electron-poor H1 protons. The Solomon link cavity is slightly
larger (d≈ 3.8 Å at its narrowest) despite being based on a circular

Figure 1. Chemical structures of Solomon link [2]catenane [1],4 pentafoil knot [2],5 and Star of David [2]catenane [3],7 shown as their PF6
− salts.

Figure 2. Single-crystal X-ray structures of Solomon link [1](PF6)8,
4 pentafoil knot [2·Cl](PF6)9,

5 and Star of David [2]catenane [3·PF6](Ph4B)11.
7

Solventmolecules, H-atoms, and counterions have been omitted for clarity. The solvent-accessible isosurface is shown as a semitransparent white surface.
The distances between the centers of the inner binding pockets and the metal ions are shown by the blue double-headed arrows, and the diameters of the
pockets (H1 radius 1 Å, the typical value for hydrogen-bonding H-atoms9) are indicated by the black double-headed arrows.
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tetramer helicate, as a result of the ligand strand having extra O-
atoms on either side of the bipyridine groups. The weaker halide
affinity of the Solomon link is consistentwith halide binding in the
central cavity being based on 8 CH···X− hydrogen bonds and
slightly longer range (Fe(II)···X−, 7.5 Å) electrostatic interactions
with 4 Fe(II) ions, compared to 10 CH···X− hydrogen bonds and
5 (Fe(II)···X−, 7.1 Å) Fe(II)−X− ion interactions in the pentafoil
knot complexes.
The Star of David [2]catenane, based on a hexameric circular

helicate, has a significantly larger diameter central cavity (d ≈ 4.8
Å at its narrowest) than the other two host molecules studied.
This is close to the diameter of an I− anion (d = 4.4 Å26), with
which it forms a 1:1 complex (Table 1), but is too large for the
other halide anions to be able to simultaneously form hydrogen
bonds with all of the H1 protons, which may account for why Cl−

and Br− are not solely bound within the cavity.

In conclusion, molecular knots and links derived from circular
metal double helicates of different sizes bind a single halide anion
within their central cavities through multiple CH···X− hydrogen
bonds and long-range Fe(II)···X− electrostatic interactions. The
size of the cavity and the number of hydrogen bonds and metal
ions involved determine the strength and selectivity of halide
binding. Pentafoil knot [2] is one of the strongest noncovalent
binding synthetic hosts for Cl− known,27 with a chloride:hexa-
fluorophosphate binding preference of >1010:1 in acetonitrile and
a chloride affinity comparable to that of silver salts.
The physical manifestation of knots and links at various length

scales is increasingly being recognized in contexts as disparate as
biopolymers,28 colloidal clusters,29 liquid crystals,30 and soap
films.31 The exceptional strength and selectivity of the anion
binding of [1], [2], and [3], and the fact that their binding pockets
are topologically chiral, makemetalatedmolecular knots and links
an intriguing new class of host architectures for anion binding and
recognition processes.
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